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ABSTRACT 

A combined theoretical and experimental research program has been carried out to investigate the stability 
characteristics of thin-walled circular cylindrical shell structures exposed to a high velocity fluid dynamic 
(aerodynamic) environment. As a result of this study, several basic observations were made concerning-the degree of 
sophistication required in the analytical modeling of this problem. It was found, for example, that small details in 
the description of the structural boundary conditions can strongly influence the stability of the shell. One of the 
more significant structural boundary condition effects was observed when the shell geometry and loading conditions 
were such that the edge bending disturbances were propagated well into the interior of the shell. On the other hand, 
when conditions were such that these edge bending disturbances were confined to a small boundary layer region near 
the ends of the shell no significant edge effects due to bending were noticed on the overall shell stability. Small 
initial deviations of the shell's surface from its idealized shape were also shown to drastically reduce its resistance to 
panel flutter, a dynamic instability, even though the deviations were only on the order of one shell thickness or less. 
Panel flutter instabilities in the presence of a laminar fluid boundary layer profile were found to be much less 
destructive to the shell than those originating in the presence of a turbulent profile. Furthermore, the laminar profile 
was also found to induce panel flutter at much lower levels of free stream energy. The highly divergent panel flutter, 
occurring in the presence of a turbulent profile, appeared to have a characteristic wavelength that was small 
compared to the radius and length of the shell. In contrast, panel flutter, occurring in the presence of a laminar 
profile, had a characteristic wavelength that was on the order of the radius or length of the shell. The experimentally 
determined panel flutter boundaries were also found to be in poor agreement with all existing theoretical 
predictions. At supersonic Mach numbers no significant air stream influence was noticed on the shell buckling loads. 
The wealth of available still air buckling data can consequently be employed to determine the buckling loads of 
cylindrical shells exposed to a supersonic air stream. Although most of the study was conducted on the isotropic 
cylindrical shell, analyses have been carried out illustrating how these results could be extended to certain types of 
ring and longeron stiffened cylindrical shells. When the rings and longerons divide the shell surface into identical 
panel elements the analyses can be reduced in a rigorous manner to that of an equivalent panel clement of the 
system due to the circulant form of the equations of motion. This reduction procedure allows for all types of 
interelcmcnt (panel) coupling and is subject to the sole restriction that the dynamic phenomena be satisfactorily 
described by linear theory. The present study shows that a supersonic fluid dynamic environment can significantly 
complicate the dynamic stability characteristics of thin cylindrical shell structures while introducing no significant 
complications to its static stability features. 



INTRODUCTION 

This research embraces a combined experimental and analytical program to investigate the stability 
characteristics of thin-walled cylindrical shell structures exposed to a high velocity fluid environment. It includes the 
basic evaluation of the past and currently employed analytical modeling of the problem and suggests areas where the 
modeling needs further refinements. The general problem becomes one of practical consideration in the design of 
skin panels on space shuttle vehicles, reusable launch boosters, and high performance supersonic aircraft. Although 
preliminary design criteria are evolving for flat panel elements, very little design information is currently available for 
thin-walled shell-type structures. Further research is necessary to obtain a better understanding of the stability and 
also the response characteristics of thin shell structures subjected to a high velocity fluid environment which may 
include aerodynamic noise, boundary layer turbulence, and buffeting conditions or large scale turbulence. The 
present investigation is concerned only with the question as to how the stability characteristics of such structures are 
influenced by a high velocity external flow environment parallel to the shell axis. 

The experimental phase of the research was carried out in the AEDC propulsion wind tunnel facility of the 
Arnold Engineering Development Center over the Mach number range 1.2 to 3.5. Fourteen different cylindrical shell 
configurations were studied under different internal stress levels and supersonic flow conditions. All of the shells had 
a common length to radius ratio of two and radius to thickness ratios from 2000 to 4000. The experimental data 
reduction and analytical portion of the study was carried out on the University of Texas CDC 6600 digital computer 
employing a FORTRAN IV computer program. 

As a result of the theoretical studies several observations were made concerning the degree of sophistication 
required in the analytical modeling of the problem. It was found, for example, that small changes in the description 
of the structural boundary conditions can strongly influence the stability characteristics of the shell. One of the 
more significant structural boundary condition effects was observed for shells with small to moderate radius to 
thickness ratios preloaded under combined internal pressure arid axial compressive end loads. On the other hand, 
when the combined geometry and loading conditions on the shell were such that they caused the shell to respond 
more like a membrane, the induced bending disturbances from the edge constraints were confined to a small 
boundary layer region near the ends of the shell and no significant edge effects due to bending were noticed on 
the overall shell stability. Small deviations of the shell's surface from its idealized shape were also shown to 
drastically reduce its resistance to panel flutter, a dynamic instability of the shell, even though the deviations were 
only on the order of one shell thickness or less. Even the best manufacturing methods admit this magnitude of 
imperfection in the fabricated shell geometries. 

During the wind tunnel experiments, panel flutter instabilities in the presence of a laminar boundary layer 
profile were found to be much less destructive to the shell than those originating in the presence of a turbulent 
profile. On the other hand, the laminar or nearly laminar boundary layer profile will induce a limited amplitude 
panel flutter at much lower levels of free stream energy than will a turbulent profile. When panel flutter does occur 
in the presence of a turbulent profile, however, it was always found to be catastrophic. 

The visible form of the flutter mode for the highly divergent panel flutter instability appeared to have a 
characteristic wavelength that was small compared to the radius and length of the shell. For the more mild limited 
amplitude flutter, however, this characteristic wavelength appeared to be on the order of the radius and length of the 
shell. The experimentally determined flutter boundaries were found to be in poor agreement, however, with the 
existing theoretical predictions employing both short wavelength and long wavelength approximations for the flutter 
mode. A comparison was also made with two traveling wave analyses for an infinite length cylindrical shell with the 
highly divergent flutter. This comparison was justified on the basis that the characteristic lengths of the initial 
unstable wave forms were small compared with the shell radius and length. The flutter boundaries predicted by this 
analysis occurred at a much lower level of free stream energy than the experimental boundaries. All of the theoretical 
predictions concerning panel flutter were thus found to be in poor agreement with the experimental observations. 

Both experimental and analytical results from this investigation demonstrate that the still-air buckling 
characteristics of thin cylindrical shells were not significantly influenced by the supersonic air stream. The wealth of 
available still-air buckling data can consequently be employed to determine the buckling loads of cylindrical shells 
exposed to a supersonic flow field. 



Although most of the analytical studies were conducted on the isotropic cylindrical shell, analyses have been 
carried out illustrating how these results could be extended to certain types of ring and longeron stiffened cylindrical 
shells. When the rings and longerons divide the shell surface into identical panel elements the analysis can be reduced 
in a rigorous manner to that of an equivalent panel element of the system due to the circulant form of the equations 
of motion. This reduction procedure allows for all types of interelement (panel) coupling and is subject to the sole 
restriction that the dynamic phenomena be satisfactorily described by linear theory. 

The influence of a high velocity fluid environment on the stability features of thin cylindrical shell structures 
involves many parameters which significantly complicate the problem. The basic development and evaluation of 
suitable methods of analysis for this problem must, by necessity, involve both theoretical and experimental 
investigations. This approach has been followed in the present program. The analytical definition and modeling of 
the problem are presented first along with the theoretical results obtained from the problem solutions. Experimental 
observations made during this study are then presented. Finally, evaluation of existing theoretical models of this 
problem are made based upon the available experimental data, and recommended refinements for future analytical 
modeling are presented. 

THEORETICAL STUDY 
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Due to the expense and difficulty involved in conducting an experimental study of this problem the shell 
aeroelastic stability was investigated initially from an analytical point of view to gain further insight into the 
parameters that may significantly influence the experi- 
ment. The model under study, flow conditions, and 
static loading conditions are shown in Fig. 1. This model 
represents a thin-walled, finite length, isotropic cylindri- 
cal shell structure with a large radius to thickness ratio 
and small initial deviations of its median surface from 
that of a perfect circular cylindrical shell. The initial 
imperfections are axisymmetric having a harmonic wave 
form in the axial direction. The outer surface of the shell 
is exposed to a supersonic potential flow parallel to the 
shell axis. The static loading on the shell consists of an 
axially compressive end loading, an internal pressure 
loading, and a hydrostatic pressure loading on the outer 
surface due to the flow field. This model was thought to 
include most of the significant parameters that influence 
the shell's aeroelastic stability. That is, the influence of such different parameters as initial geometric imperfections, 
structural boundary conditions, different potential flow approximations, and prestress levels could all be readily 

investigated with this model. 
FORMULATION» I 

PERFECT SMELL 

— INTERNAL PRESSURE   p(pilf) 

Fig. 1 
Shell Geometry and Flow Conditions 

Problem Formulation 

The problem formulation is sepa- 
rated into two major categories as illus- 
trated in Fig. 2 [3]. The first formulation 
is based on a perfect circular cylindrical 
shell, whereas the second formulation 
centers around a shell with axisymmetric 
initial imperfections of harmonic wave 
form. Both formulations contain the so- 
called classical analysis, PATHS No. 1 and 
No. 3, and a nonclassical analysis. PATHS 
No. 2 and No. 4, as special cases. In the 
classical analysis, a kinetic stability solu- 
tion is considered by investigating the 
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Fig. 2 
Formulation of Aeroelastic Stability Problem 



behavior in time of small displacement perturbations with respect to the middle surface of the original shell 
geometry which is either a perfect shell, PATH No. 1, or an imperfect shell, PATH No. 3. Any change in the shell 
static equilibrium shape due to axially compressive end loading, internal pressure loading, or fluid dynamic loading 
prior to the instability is ignored. The stress state in the shell is determined from membrane theory and the static or 
dynamic stability of the shell is investigated about its originally specified geometric shape. In contrast, the 
nonclassical analysis determines the statically deformed middle surface (prcdeformation shape) of the shell due to 
initial loading conditions prior to an instability and then investigates the stability of the shell about this newly 
calculated equilibrium surface employing a kinetic stability approach. In essence, the nonclassical approach attempts 
to more realistically model the actual structural boundary conditions in the problem. An additional formulation of 
the problem was also carried out employing the so-called "freely supported" boundary conditions in contrast to 
those shown in Fig. 2. These basic formulations lead to refinements in the structural modeling of the problem in at 
least two areas. They can be classified as a predeformation effect and a direct structural boundary condition effect. 
The latter results from specifying different structural boundary conditions on the ends of the shell whereas the 
former results from an interaction of the initial prestress, in an otherwise perfect or imperfect shell, with the 
structural boundary constraints. 

A set of nonlinear Donnell type shell equations coupled with a linear potential flow theory was employed to 
describe the motion of the shell and the radial surface pressure loading respectively in the presence of a supersonic 
flow field. Geometric nonlinearities along with the initial imperfections are introduced into the shell theory through 
the strain-displacement relations. In-plane inertia of the shell has been neglected in the equations of motion due to 
the anticipated predominately radial motion of the shell during an instability. The governing equations of motion of 
a cylindrical shell with small initial deviations of the median surface are written in terms of the radial displacement 
w , and the total stress function F , as 

ERV
4

F 
= w^y-w,xxw

)yy + gwpcx-^r^xw
)yy-Wr,yywpcx+2^ywpcy 0) 

DV4w + ^ Fpcx - F.yyCw.xx+w^) - F^w^yy) + 2F;Xy(W)Xy+wr)Xy) = p(x,y,t) (2) 

where the commas denote partial differentiation. The associated boundary conditions of a shell with simply 
supported "zero tangential shear stress" edges at x=0,L are 

w(x,y,t) = wfx.y.t)^ = Ffx.y.t^y = 0 

F(x,y,Oyy = Nx 

while the classical "freely supported" boundary conditions are 

uCx.y.t)^ = v(x,y,t) =w(x,y,t) =w(x,y,t)>xx = 0 (4) 

The surface loading on the shell may be defined as 

P(x,y,t) = p-pshwn + pa (5) 

where the first term represents the static pressure differential across the skin of the shell and the second term is the 
inertial loading resulting from the motion of the shell surface. The radial aerodynamic pressure is obtained from 
limiting cases of the exact supersonic potential flow solution over a finite length shell with a harmonically oscillating 
surface. The approximations are valid for the so-called long and short wavelength modes of shell instability. They are 
obtained from the solution of the following boundary value problem. 
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where 0 is a perturbation velocity potential induced by the shell radial deformation w . The total velocity potential 
being 4> = U(x+0). In addition-, r , 8 , and x are polar coordinates as indicated in Fig. 1 while U is the magnitude 
of the free stream velocity, M the free stream Mach number, and a the speed of sound in the undisturbed flow. 
The pressure coefficient Cp is defined in terms of the perturbation pressure, p , and the free stream static pressure, 
Poo, and the dynamic pressure, q^, as 

_  P-Poo 

The systems of Eqs. (1), (2), (3) or (4), (5), and (6) are solved subject to the restriction of simple harmonic motion 
and the stability analysis reduced to the solution of a complex eigenvalue problem. More specifically, the 
combination of physical parameters (such as flow velocity, fluid density, shell geometry, etc.) that lead to one or 
more real valued eigenvalues represents the desired solutions of interest. 

Method of Solution 

A complete consistent solution to the stability problem is accomplished in two steps. The first step determines 
the prestability deformation of the middle surface due to the application of initial preloads and radial pressure from 
the air stream. This deformation is determined in closed form from a set of steady-state response equations obtained 
by separating Eqs. (1) and (2) into their static and dynamic components after making the following substitutions 

w(x,y,t) = ws(x) + w°(x,y,t) 

F(x,y,t) = Fs(x,y) + F°(x,y,t) (7) 

P(x,y,t) = ps(x) + p°(x,y,t) 

This is possible because of the axisymmetric property of the initial imperfections, the surface loading, and the 
resulting prestability deformations. A set of equations governing the static prestability deformations (subscript s) is 
obtained by virtue of the equilibrium state existing prior to the instability. A second set of linearized equations in 
terms of the dynamic components (superscript o) govern the dynamic or static stability of the shell about its 
deformed middle surface. The two systems of equations are coupled through the induced static deformation and 
stress terms. 

The deformed middle surface of the shell (predeformation state) is determined from the following set of steady 
state response equations 

Dws,xxxx + 0/R)Fs,xx - Fs,yyws,xx = PSW + Fs,yyWr,xx <8) 
and 

(l/Eh)V4Fs = (1/R)wsxx (9) 



and the associated boundary conditions at x=0,L of 

ws(x) = WjW^ = Fs(x,y)^y = 0;      Fs(x,y)yy = Nx (10) 

or in the case of freely-supported edges 

usWx = vsW = ws(x)=wstoxx = ° <n> 

The initial geometric imperfection is defined as 

wr = /i sin (rmc/L) (12) 

The general analytic solution is obtained by solving Eq. (9) for the appropriate derivatives of the stress function 
which reduce Eq. (8) to the -form of an ordinary fourth order linear inhomogeneous differential equation with 
constant coefficients. This is then readily solved in closed form by standard methods. After this first step of the 
solution is completed, the second procedure involves obtaining nontrivial solutions to the following linearized 
dynamic set of linear partial differential equations possessing variable coefficients 

DVV + 1 F^ - F ,/^ - FSjXXwOyy - Fyw;' + w*/) + 2F.^w^ = P°(x,y,t) (13) 

and 

H^-R-Sx-« + ■>"», <M> 

The primes denote ordinary differentiation with respect to x. The associated boundary conditions are 

w0(x,y,t) = w0(x,y,t)>xx = F0(x,y,t))Xy = F°(x,y)t)y}, = 0 (15) 

or for the freely-supported case 

u°(x^,t))X = v0(x.y>t) = w0(xJyJt) = w0(x>y.t))XX = 0 (16) 

The specific form of the variable coefficients are obtained from a solution of the static response problem and the 
form of initial imperfection. Modal solutions of the dynamic equations are sought in the form 

\v°(a,6,T) = f(a) cos nöe*7" 

F°(a,Ö,r) = g(a)cosn9eikT (17) 

.,. Ut       .       coR ,.      n _x 
with: 7 = -p-      k = -=y- (k real)       a = ^ 

where the axial deformation function and axial stress function satisfying the boundary conditions are denoted by 

N 

or for freely-supported edges by 

f(a) — 2 
m=l 

Xm sin Zma 

g(a) = 
N 

m=l 
Ym sin Zja sin Zma 

f(a) = 
N 

m=l 
Xm sin Zma 

g(a) = 
N 
2 Ym sin Zma 

(18) 

Z   =m7r/(L/R) m 

(19) 



Galerkin's approximate solution method was then applied simultaneously to Eqs. (13) and (14) reducing the 
equations to the matrix form of a nonlinear eigenvalue problem with eigenvalue k. 

[k2B0-
kBl-B2^ = ° <2°) 

The system was then transformed to the form of an equivalent linear eigenvalue problem, 

det[A-kI] = 0 (21) 

Having the same eigenvalues as Eq. (20) [7]. 

The stability criteria employed in the analysis observes the behavior of the eigenvalue k as a function of the 
free stream static pressure or applied axial load. The time dependent part of the dynamic solution is of the form 

w°(a,e,T) ~eikT. 

The onset of a dynamic instability occurs when the imaginary part of k changes sign from a positive to negative 
value while the real part remains finite but nonvanishing. At the critical stability boundary the shell motion becomes 
undamped simple harmonic. In contrast, a static instability occurs at zero frequency. The real part of k vanishes as 
the imaginary part of k changes sign from a positive to negative value. The latter form of instability is frequently 
classified as a buckling or divergence phenomena while the former represents a panel flutter instability. 

In the above method of solution, the specific form of the aerodynamic pressure approximations was not 
mentioned and a few comments on this are in order. In keeping with the general form of solution, the perturbation 
velocity potential, radial displacement and down wash components were expressed as 

0(x^,0,t) = <pn(x,r) cos nö elcjt 

w(x,0,t) = wn(x) cos no eicjt (22) 

W(x,0,t) = Wn(x) cos nö eiwt 

Upon substituting this into Eq. (6) and applying the Laplace transformation 

^n(p,t)=?e-Px0n(x,r)dx (23) 
o 

To the resulting equations one obtains the following solution for the transformed perturbation velocity potential 

Kjqr) 
0n(p,t) - RWn(p) ^ (24) 

where 

'M2 q2=(f)2p2 + 2M2ic(?)p-oA 

and K- is a modified Bessel Function of the second kind. Upon inversion the velocity potential may be expressed 
as 

0n(x,r,0,t) = R cos nö e1* J W„(z) U„(x-z) dz (25) 



Where the aerodynamic Kernel function is defined in terms of the inverse Laplace transform 

1    c+i~   _x 
K"(qf)  dp (26) 

Now this aerodynamic Kernel function for unsteady flow can be expressed in terms of the previously defined 
Randcll functions which arise in the solution of the steady flow problem [13]. That is 

with tv    ,  .. 
j   a+ico e?xKn(^) Ay .     L 

The pressure loading on the shell surface associated with the nth circumferential deformation mode is then given by 

C    =_2(3A + i^O (28) 
S>        L \9x R  Vn/r=l 

which after an appropriate integration by parts may be expressed as 

Cp = |cosnöe-< 

2 
.wLM_/    s . 

Now for short wavelength instabilities occurring at high Mach numbers the integral correction term becomes quite 
small and can be neglected [5,9]. This resulting piston theory expression with a first-order curvature correction term 
was employed to estimate the unsteady air loads on the shell in the so-called short wavelength approximations. 

The long wavelength approximation is based upon the following asymptotic approximation to the aerodynamic 
Kernel function Un(x) [5,6,10]. 

f£> * n^O,   ,nW2>n2+, 
oK^a)      (n2+a2^ 

The above approximation is exact as a tends to either Oor». That is,as the shell surface approaches a slender or 
planar configuration to the air stream. In the limiting case arK) the aerodynamic Kernel function takes on the 
characteristic of a delta function,  i.e., 

W _,   I. 
K^^'n 

Un(a)--*5(x) 

and the pressure coefficient can be approximated as 

O.-+0 



f^H>v^lo^<rM^] (30) 

The pressure singularity at the leading edge of the shell will give rise to a concentrated generalized aerodynamic force 
acting at this edge when it is not restrained against radial deflections. This is a consequence of applying slender body 
theory to a configuration possessing a discontinuity in cross section. In essence the pressure singularity need be 
retained only in those flutter analyses where the shell leading edge is not completely restrained against radial 

movement. 

Slender body theory and piston theory are a plausible approximation to the aerodynamic pressures for 
predicting a low supersonic Mach number long wavelength instability and a high supersonic Mach number short 
wavelength instability, respectively. They were the two potential flow approximations employed in the present 
study to estimate the steady and unsteady pressure loadings on the shell surface due to the supersonic flow field. 
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Theoretical Results 

The theoretical investigations carried out to date have looked into the influence of initial geometric 
imperfections, refinements in modeling structural boundary conditions, and different aerodynamic approximations 
on the accuracy in estimating the aeroelastic stability characteristics of thin cylindrical shell structures. Several 
definitive observations have resulted from the theoretical study which are detailed in the following. 

a)    Influence of Structural Boundary Conditions on the Shell's Aeroelastic     _  os 
Stability I 

Refinements in modeling the structural boundary conditions were 
carried out in two basic areas of interest. These were classified as a 
predeformation effect and a direct structural boundary condition effect. The 
latter results from specifying different structural conditions on the ends of 
the shell whereas the former results from an interaction of the initial 
prestress, in an otherwise perfect or imperfect shell, with the structural 
boundary constraints. That is, when predeformations are considered, stability 
is investigated about the deformed state of the shell instead of its freely 
expanded or undeformed state. This deformed state results from preloading 
the shell with a combined internal pressure and/or uniform axial loading in 
the presence of an air stream and realistic boundary constraints. The modified 
piston theory approximation, given by Eq. (29), with the integral term 
neglected, was employed to estimate the aerodynamic pressure loadings. 

The basic problem under consideration here was the formulation no. 1 
illustrated in Fig. 2. When predeformation effects were considered path no. 2 
was followed in this problem formulation and the shell's 
aeroelastic stability investigated about   its predeforma- 
tion state. When path no. 1 was followed in the problem ■= 
formulation the preloading on the shell did not change ^ 
the basic shell geometry and stability was investigated g 
about the shell's initial or undeformed state.This slight S 
refinement in structural modeling implied by path no. 2 a 
can have an influence on the stability characteristics of y 
the shell as illustrated in Figs. 3 and 4. In Fig. 3 it is ? 
shown that when the combined loading and geometry i 
were such that the predeformation effects were propa- £ 2 
gated from the ends of the shell well into its interior a „ 
15  to 20 percent shift was observed in the flutter ft 0 

boundary of highly stressed shells. This predeformation 
influence was found to stabilize the shell. On the other 
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hand, for certain shell geometries and loading conditions 
the predeformation influences were restricted to a small 
region or boundary layer adjacent to the ends of the 
shell and no significant influences were obtained as 
illustrated in Fig. 4. The influence of applying different 
structural boundary conditions on the ends of the shell 
was investigated over a range of parameters where 
predeformation effects were not found to be significant. 
Small changes in the structural description of the 
boundary constraints can produce significant shifts in 
the aeroelastic stability of the shell. This is illustrated in 
Fig. 5 where changes only in the in-plane boundary 
conditions produced significant shifts in the aeroelastic 
stability boundary at the higher levels of internal stress 
or pressurization. Although these refinements in the 
modeling of the structural boundary conditions did not 
explain the existing discrepancy between theory and the 
earlier experiments, information was obtained on the 
accuracy required in the modeling of the structural 
boundary conditions for a realistic analysis. In summary 
it was found that the correct structural modeling of the 
shell must include the option of employing different 
structural boundary conditions as well as predeforma- 
tion effects. 

0.1 02 03 
INTERNAL PRESSURE PARAMETER 

Fig. 5 
Cylindrical Shell Flutter Boundaries for Two Different 

Structural Boundary Conditions 

b)    Influence of Initial Geometric Imperfections on the Shell's Aeroelastic Stability 

»• 

This study represented an additional structural refinement introduced in the aeroelastic modeling of cylindrical 
shell structures. It represents an extension of the study conducted under part (a) and was again undertaken to help 
clarify the reason for the large discrepancy that existed between experimental and theoretical observations on 
cylindrical shell panel flutter. More specifically the existing analytical models were extended to determine the 
influence that small initial geometric imperfections, due to fabrication techniques, have on the aeroelastic stability 
behavior of cylindrical shells. The modified piston theory aerodynamic approximation was again used and the 
basic problem under consideration here was the formulation no. 2 illustrated in Fig. 2. When the predeformation 
influence of part (a) is also considered, path no. 4 is followed in the problem formulation. When the 
predeformation effects are neglected path no. 3 
represents the appropriate formulation. The present 
study demonstrates how an apparently better correla- 
tion between the. theory and earlier experiments can 
be achieved when initial geometric imperfections are 
considered in the analysis. The nature of the imper- 
fections were estimated from experimental measure- 
ments on fabricated shells. This apparent improved 
correlation with experiments is illustrated in Fig. 6, 
where the results of formulation no. 1 path no. 2 are 
compared with the results of formulation no. 2 path 
no. 4. It is evident that initial geometric imper- 
fections drastically reduced the shell's ability to resist 
panel flutter even when the imperfection amplitudes 
were only on the order of one shell thickness. The 
results of the present analysis extended our concept 
concerning the correct structural modeling for studies 

M«3 0 
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L/R-2 0 
N • 0.0 

PATH #4,r-4,?-I.O 

.5 1.0 
SHELL    INTERNAL    PRESSURE   p (pii«) 

Fig. 6 
Aeroelastic Stability Boundaries; Demonstration of the 

Effect of Initial Imperfections 

related to the aeroelastic stability of thin cylindrical shells. In essence, the correct structural modeling of the 
shell must include the option of employing different structural boundary conditions, predeformation effects, as 
well as initial geometric imperfections that may be present in the shell surface. 



It is of interest to note that a limit check on the 
analysis of parts (a) and (b), concerning conclusions on 
structural modeling, was obtained by setting the air 
speed equal to zero. This stability study then reduces to 
a classical shell buckling analysis under the influence of 
predeformation effects and initial geometric imperfec- 
tions. This has been extensively studied in the literature 
and much data is readily available for comparison. The 
limit checks used in the present study agreed with the 
published results in all cases. This is illustrated in Fig. 7 
[1]. This was assumed to be a sufficient verification of 
the analyses and Computer codes developed during these 
studies. 

r 

E«HilO   pti 

LT*k        UNSTABLE 

3  T5V 

R/h • 100 
L/R « 3.2 
»■0.0 pti 

4 <v 
^W             /—ALMROTH'S STATIC    SOLUTION 

STABLE        ^^_ 

«   ^^^fracfl 

PRESENT THEORY ' 6 
PATH#4,fl3, 20TERMS 

■       '       >       '       1        '       l--L- —I 1 1 1 1 1 1 
-.5 -1.0 

IMPERFECTION   AMPLITUDE   RATIO     ? 

Fig. 7 
Numerical Solution Limit Check 

c)    Influence of Supersonic Flow Field on Critical Buckling Loads of Cylindrical Shells 

The structural loads imposed on many aerospace vehicles passing through the region of maximum dynamic 
pressure during the boost or reentry phase of a trajectory are quite severe and may result in the structure becoming 
aeroelastically unstable in a static mode. That is, the structure may encounter a buckling type collapse rather than a 
panel fluttering instability due to the combined air and inertia loads imposed upon it. Since the primary structural 
member is usually the thin walled cylindrical shell the problem becomes one of investigating its stability against 
buckling when its outer surface is exposed to a high velocity air stream. The initial preload was a combined internal 
pressure and axial compressive end loading and the modified piston theory approximation was again used. Primary 
findings in this area indicate that if the critical loading conditions occur at supersonic air speeds then the existing 
still air buckling data should be beneficial in the design of such shell structures. The influence of the supersonic air 
stream has no significant effect on the shell's ability to resist a buckling collapse. These conclusions have been 
confirmed on both a theoretical and experimental basis. The theoretical study employed the computer code 
developed under parts (a) and (b) above. Some of the 
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theoretical data substantiating these conclusions are 
illustrated in Fig. 8. In this illustration three different 
shell internal pressures p were examined and the 
corresponding stability boundaries plotted in Fig. 8. It is 
seen that for each shell internal pressure level, the 
stability behavior exhibits^ similar trend as a function 
of the applied axial load Nx. As the applied axial load is 
increased, the ability of the shell to resist a dynamic 
(fluttering) type instability decreases by as much as 
85-90 percent of the zero axial load case. This pro- 
nounced destabilizing trend occurs at axial loads less 
than 40 percent of the static still air buckling load of the 
shell. For axial loads above approximately 40 percent of 
the critical buckling load, the freestream static pressure 
required to cause an aeroelastic instability remains fairly 
constant but the critical circumferential wave number 
decreases until a critical axial load is reached. At this 
axial load, the shell diverges into a static buckled shape with a corresponding circumferential wave number 
equivalent to that predicted from still air buckling studies. Also, the critical divergence axial load obtained in the 
presence of a supersonic flow field is essentially the same as the critical buckling load predicted by the still air 
buckling study at corresponding shell internal pressures. 

It is apparent from this study that the axial load carrying capability of thin cylindrical shells is not influenced 
by the existence of an external supersonic flow field. This was also confirmed in the experimental study discussed 
below. However, this does not preclude the necessity of investigating the dynamic stability of the shell since for 
certain flow and stress conditions the shell may be statically stable but dynamically unstable. 



d)    Evaluation of Different Potential Flow Approximations 

Although the aerodynamic theory most commonly employed in the reported theoretical results was the 
modified simple piston theory approximation, several studies have been carried out using the slender body 
approximation valid for long wavelength instabilities occurring at low supersonic Mach numbers [5,2]. 
Unfortunately, after extensive study it was found that this simple aerodynamic theory could not be expected to 
predict even the qualitative features of the shell dynamic instabilities that were observed experimentally. 
Comparisons with a good number of experimental observations indicated that slender body theory does not predict 
a dynamic instability (panel flutter) over the range of experimental parameters where a dynamic instability was 
observed. Instead slender body theory always predicted a static or divergence instability over the complete range of 
parameters investigated. In addition, this aerodynamic approximation indicated a significant influence of the 
supersonic flow field on the buckling characteristics of thin cylindrical shells that was not predicted by the modified 
piston theory approximation or observed experimentally. In view of this, the theory was considered to be 
inadequate for the present problem. The modified piston theory approximation showed reasonably close correlation 
with all of the earlier experimental observations on a mild limited amplitude panel flutter occurring on initially 
unstressed shells. It became increasingly unconservative, however, as the initial prestress in the shell was increased. In 
addition, it did not compare very well with a more highly divergent flutter reported for the'first time in the present 
experimental study. Experimental observations discussed below cast further doubt on even the validity of employing 
the modified piston theory aerodynamic model for predicting the shell dynamic stability. In essence, all potential 
flow models appear to be on questionable grounds for predicting the dynamic stability characteristics of thin shell 
structures. 

EXPERIMENTAL OBSERVATIONS 

To further evaluate the accuracy of the analytical modeling in the above analysis and in the analyses carried out 
to date on this problem, a wind tunnel experiment was designed and conducted on 14 different cylindrical shell 
configurations under different internal stress levels and supersonic flow conditions. All of the shells had a common 
length to radius ratio of two and radius to thickness ratios from 2000 to 4000. These shell geometries were taken to 
be the same as those from an earlier program to facilitate a comparison of the present results with these earlier 
experiments [11,12]. The facilities of the 16-ft supersonic and transonic Propulsion Wind Tunnel of the Arnold 
Engineering Development Center was employed for the study. Full details of the wind tunnel facility are presented 
in [16]. 

Description of Flutter Model and Instrumentation 

The experimental flutter model was a ogive cylinder configuration cantilevered at its base from the wind tunnel 
sting. The thin shells under study were isotropic circular cylindrical shells fabricated from copper by an 
elcctroforming process. The shells were bonded to two heavy copper end rings and mounted near the base of the 
ogive cylinder model. The electroforming process provided shell models with a high degree of uniformity in both 
material and geometric properties while minimizing geometric imperfections and initial fabrication stresses. In 
addition, extremely thin shells could be easily fabricated in this manner. A photograph of a typical test shell without 
end rings, and its installation in the wind tunnel is shown in Fig. 9. 

Several types of instrumentation were employed on the model to observe and control the shell instabilities. 
Transducers were employed to monitor both static and dynamic displacements of the shell skin. Loading 
mechanisms were also employed that could simulate a variety of stress states in the shell by employing axial 
comprcssive end loads and/or internal pressurization. A boundary layer control slot was located in the model nose 
cone to artificially trip an existing laminar boundary layer profile or thicken an already fully developed turbulent 
profile. A variety of boundary layer rakes and static surface pressure probes were also employed to determine the 
nature of the local flow field over the shell. Finally, visual monitoring through high speed photography and on-line 
television cameras provided an additional mode of instrumentation for observing the shell instabilities. Further 
detailed descriptions on the model and instrumentation can be found in [8]. 



Observed Shell Instabilities 

Two basic  types  of 
shell instabilities were ob- 
served during the course of 
the experiments. This in- 
cluded   a   divergence   or 
buckling instability and a 
dynamic or panel fluttering 
instability of the shell skin 
in the presence of a super- 
sonic air stream. This latter •»"•"*••".\. :-:-->;>:::::::::;:oyy::: 

instability is similar to flag        '':"-"':-:"::::::':'::''"':"'.-'}y::>:':^ 
or sail  flutter, while  the        ^*•^"V^^V^'-:-""^'';i':W^'•*•'•*;^^■>^:•' 
former appears identical to        *'+''*t'^y*'']''l\\<"\'-<:'-:&*'':''- 
the classical static buckling        "^l\\-l:-:':::::^:'^-:-y^^i 
instability of thin shells un-        r*V*.";-';.';•*'■\"-;w"\;:::-::*:x^Ä 
der  combined  axial com- •♦••.-.•-•..•- 
pressive end loading and/or 
internal pressure. The basic experimental procedure followed 
during the course of the study was to maintain wind tunnel 
conditions fixed and" change the shell model internal stress 
state or boundary layer features to initiate or suppress a shell 
instability. 

Buckling or Divergence. Instability 

Buckling or divergence studies were conducted to deter- 
mine the influence of the supersonic air stream on the shell 
classical still air buckling loads, and to establish a safe shell 
loading limit for avoiding a divergence or static mode of shell 
instabilities over a range of supersonic flow conditions. 
Although the onset of a static divergence or buckling collapse 
was quite evident due to its catastrophic nature, several 
experimental indicators were employed to distinguish its 
characteristics [8]. The influence of the supersonic air stream 
on the classical buckling loads of thin cylindrical shells under 
combined axial end compressive loading and internal pressuri- 
zation was investigated by correlating data from at least a 
dozen different test conditions. These included shell buckling 
studies both with and without the influence of an external 
supersonic flow. The data are presented in Table I and on the 
buckling interaction curve illustrated in Fig. 10. The data 
represented by the shaded points in Fig. 10 were taken from 
still air buckling tests, while the open symbols represent wind 
tunnel test points. The flow conditions and radius-to-thickness 
ratios of each shell are indicated beside each test point. The triangular open symbols represent dynamic instabilities 
(panel flutter), while the remaining open symbols represent static buckling in the presence of an air stream. The data 
on this interaction curve indicate that no significant shift occurs in the wind tunnel buckling load points (open 
non-triangular symbols) when compared to their still air buckling counter parts (shaded symbols). The primary 
findings here indicate that if the critical loading conditions on the shell cause it to become unstable in a divergence 
or buckling mode at supersonic air speeds then the wealth of existing still air buckling data should be beneficial in 
estimating the buckling loads of such structures. The interaction design curve suggested in  [17]  which is 

Fig- 9 
Cylindrical Shell Flutter Model and Wind Tunnel 

Installation 
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superimposed on Fig. 10 constitutes a 
reasonable design criterion for this 
observed static instability of the shell. 
The divergence or buckling mode 
shapes found in the presence of an air 
stream were also representative of 
those found in still air buckling studies. 
As an illustration the modal patterns 
were recorded in detail for the three 
data points singled out on the buckling 
interaction curve by the vertical ar- 
rows. Proceeding in the direction of 
increasing model internal pressure the 
modal patterns ranged from that of 
many long shallow elliptic type buckles 
equally spaced around the shell circum- 
ference for buckling under radial pres- 
sure only, to the classical diamond 
buckling pattern for combined axial 
loading and moderate internal pressure, 
to the fully axially symmetric bellows 
type mode for combined loads with high internal pressure levels [4]. 

R/h ■ 3220 
M • 2.2 
PT~ • 1500 

R/h - 2420 
M ■ 1.2 
PT» • 2600 

Fig. 10 
Buckling Interaction Curves 

On the basis of the experimental buckling interaction curve established in Fig. 10, a maximum safe loading 
condition was established that would guarantee a shell safe from buckling or diverging in a supersonic air stream 
when loaded under a combined internal pressure and axially compressive end loading. Although a cylindrical shell 
should be statically stable for all supersonic flow conditions when loaded under a combined stress state that lies 
below this curve it may still be dynamically unstable as indicated by the location of the open triangular symbols on 
this interaction curve. 

It should be mentioned in passing, that the previously mentioned theoretical studies are in basic agreement with 
these experimental observations concerning the influence of a supersonic flow field on the classical buckling loads of 
cylindrical shells. Furthermore, the wind tunnel buckling studies were conducted under boundary layer profiles that 
ranged from laminar to fully developed turbulent. Nevertheless, no resulting viscous or fluid effects were observed 
on this static mode of shell instability. 

Panel Flutter Instability 

In addition to the static buckling instability described above, two types of dynamic instabilities were observed. 
One of these was a nondestructive limited amplitude fluttering motion whose maximum amplitude was on the order 
of four or five shell thicknesses. This motion was found to occur only in the presence of a laminar or near laminar 
profile of the type illustrated in Fig. 11 a labeled Blasius. The amplitude time traces of two points on the shell 
surface during this motion are illustrated in Fig. 12 along with the model internal cavity pressure time history. Both 
the analogue and digitally plotted amplitude time histories are shown illustrating the harmonic character of the 
motion. The power spectral density, obtained from a fast Fourier transform of the digitized amplitude time history, 
are illustrated in Fig. 14a while the power spectral distribution is presented in Fig. 14b. The flutter mode appeared 
to be of a standing wave type with many waves around the circumference and one or two waves in the streamwise or 
shell axis direction as illustrated at the top of Fig. 15. For very small changes in the stress state of the shell or 
external flow conditions the amplitude time history would shift to the form illustrated in Fig. 13. Two modes of 
motion appear to be excited on the shell in this case as is illustrated by the power spectral density and distribution 
curves in Figs. 14c and d. Motion of the type illustrated in Figs. 12 and 13 were maintained on the shell for 
approximately one-half hour with no apparent damage to the structure. During this time a range of stress levels and 
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Fig. 13 
Amplitude Time and Internal Pressure Time Histories of Limited Amplitude Flutter 

flow conditions were investigated as indicated by the two horizontal arrows associated with the triangular 
symbol of the buckling interaction curve of Figure 10. This limited amplitude flutter appears identical to that 
reported earlier in the literature. (11) (12) Further observations on this limited amplitude flutter instability 
have shown that for nearly perfect shells with minimal geometric imperfections the limited amplitude standing 
wave flutter mode may be transformed into a circumferentially traveling wave form also of limited.amplitude 
motion whose front is nearly parallel to the airstream direction. (11) This is illustrated by the middle sketch of 
Figure 15. During the course of experiments on this type flutter it was also observed that this nondestructive 
limited amplitude flutter could be completely stabilized by tripping the laminar boundary layer making it tur- 
bulent and thicker as illustrated in Figure 11a. No limited amplitude motion of the above type was ever observed 
in the presence of a fully developed turbulent profile. (8), (15) 

In contrast to this type of panel instability, a highly divergent flutter motion was also observed in the pres- 
ent study as illustrated by the amplitude and model cavity internal pressure time histories in Figure 16. These 
instabilities occurred in the presence of the fully developed turbulent profile shown in Figure lib and were not 
observed in any of the prior experiments reported in the literature. Although the amplitude time traces of Fig- 
ure 16 appear to be of limited amplitude, this actually represents a saturation of the instrumentation which was 
not designed to measure shell deformations on the order of an inch or so which occurred during this type of 
motion. In actuality, the highly divergent motion continues to grow until the shell is destroyed. This usually 
occurs within a few seconds at most. In this more catastrophic flutter, the power spectral density curves indi- 
cate a wider distribution of the energy in the frequency spectrum than that found for the limited amplitude 
flutter. This is attributed to the fact that the amplitude time traces are so highly divergent that some signal dis- 
tortion is encountered in these traces due to the saturation of the instrumentation. In these cases the identifica- 
tion of the unstable flutter point in the frequency plane is better identified by the large jump in power illustrated 
by the power spectral distribution curves. 

The highly divergent flutter mode shape was determined by viewing frames of several high speed movie 
film strips taken from different observations made on this instability. The characteristic wave form was found 
to be highly three dimensional, growing quite rapidly in amplitude as it propagated from the leading edge to 
the trailing edge of the shell. On the relatively thicker shells (R/h - 2000-3000) a series of wave fronts of the 
type illustrated by 
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the bottom sketch in Fig. 15 were observed to propagate 
rapidly from the leading edge to the trailing edge of the shell 
destroying it within a few seconds. The wave form was sharply 
defined being composed of two arms made up of small diamond 
buckles. The arms intersected to produce a 'V-shaped wave 
front with the apex or lead buckle propagating along a shell 
generator in the airstream direction followed by the arms. The 
characteristic like arms appeared to maintain the same angular 
orientation relatively to the free stream velocity vector but grew 
in amplitude and length as they traveled downstream. In all 
cases, the arms of the wave front extended back to the shell 
leading edge as it propagated downstream; the leading edge 
acted as a local buckle source required for extending the length 
of the wave front. For the much thinner shells (R/h ~ 4000) a 
similar three-dimensional wave front was observed which, 
however, appeared more crescent-shaped in form than 'V 
shaped. In addition, the wave front did not appear to be 
composed of small local dimples and did not appear to extend 
back to the leading edge of the shell. Some of the features of 
this wave form, however, were identical to those found on the 
thicker shells. That is, they were always highly divergent and a 
few series of the fronts would propagate over the shell destroy- 
ing it within a second or so. The slightly different wave form 
found on the thinner shells was thought to be due to their small 
bending stiffness and more membrane-like character. 
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Fig. 15 
Wave Form for Different Types of Flutter 

The basic experimental observations made during this phase of the experimental study indicate that the nature 
of the boundary layer is an important factor in the dynamical stability considerations of thin cylindrical shells 
exposed to a supersonic air stream. A laminar or nearly laminar boundary layer profile was found to induce panel 
flutter at much lower levels of free stream energy than did a turbulent profile. Panel flutter associated with the 
laminar boundary layer was limited in amplitude and its mode shape was of a standing or circumferentially traveling 
wave type whose characteristic length was on the order of the shell radius or length and whose amplitude was on the 
order of the shell thickness. When panel flutter was observed in the presence of a turbulent profile, however, it was 
always found to be catastrophic. In this latter case the flutter mode resembled a 'V or wedge-shaped traveling wave 
front whose characteristic wavelength was small compared to the radius and length of the shell. The motion was 
highly divergent growing to many orders of magnitude greater than the shell thickness before destroying the shell. 

CONCLUSIONS 

As a result of this combined analytical and experimental investigation several definitive conclusions were 
reached concerning the influence of a supersonic flow field on the static and dynamic stability characteristics of thin 
cylindrical shell structures. The following are the more important conclusions obtained from this study. 

Two basic types of instabilities were observed on thin cylindrical shell, structures exposed to a supersonic flow 
field. A panel fluttering or dynamic instability was observed for certain combinations of stress states in the shell and 
external flow conditions. This instability could be quite catastrophic or nondestructive depending upon the nature 
of the fluid boundary layer over the shell. A divergence or buckling instability was also observed which appeared 
identical in every respect to the classical static buckling instability of thin cylindrical shells under combined axial 
compressive end loadings and/or internal pressure. 

Although the present research illustrates that the external flow field does significantly complicate the dynamic 
stability features of the shell one simplifying observation was made. The classical still air buckling characteristics of a 
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shell under combined internal pressure and axial compressive end loadings were not significantly influenced by the 
supersonic airstream. The wealth of available still air buckling data can consequently be employed to determine 
buckling loads of cylindrical shell structures under the above loading and external flow conditions. 

The analytical results indicate that both the static and dynamic stability characteristics of the shell are strongly 
influenced by initial geometric imperfections that may exist in the shell surface due to fabrication techniques. It was 
readily demonstrated that stability margins (critical loads or airspeeds) could be easily reduced by a factor of two or 
more even though the initial imperfections were only on the order of one shell thickness. 

Further analytical studies confirmed that the details in modeling of the structural boundary conditions were 
important when attempting to study the stability features of cylindrical shell structures exposed to an external flow 
field. Neglecting predeformation effects and investigating the stability of the shell structure about its unloaded 
geometric shape was found to underestimate its integrity against buckling or panel fluttering instabilities by as much 
as 25 percent in some cases. Predeformation effects, in general, were found to be stabilizing. Changes in only the 
in-plane structural boundary conditions of the shells were found to stabilize or destabilize the shell by an amount 
similar in magnitude to the predeformation effects. 

One of the experimental observations indicated that the nature of the fluid boundary layer is an important 
factor to consider when investigating the panel flutter characteristics of the shell. A laminar or nearly laminar 
boundary layer profile will induce a panel flutter instability at much lower levels of free stream energy than will a 
turbulent profile. When panel flutter did occur in the presence of a turbulent profile, however, it was always found 
to be catastrophic; panel flutter instability in a laminar boundary layer was always a mild limited amplitude motion 
which caused no apparent damage to the structure even though it persisted for several minutes. The limited 
amplitude panel flutter could be suppressed, however, by tripping the boundary layer to a fully developed turbulent 

form. 

All of the potential flow models employed in the analysis were found to be inadequate for predicting the panel 
flutter characteristics of the shells. While the modified piston theory approximation showed reasonably close 
correlation with the limited amplitude flutter instabilities for unstressed shells it was, in general, unconservative for 
the higher stressed shells. In addition, it did not correlate at all with the more highly divergent panel flutter 
instabilities. The slender body theory employed in the analysis did not predict even the qualitative features of the 
shell instability and was considered inadequate for the present study. In view of these findings, it is evident that the 
potential flow modeling is not adequate for predicting the shell's dynamic stability features. Viscous effects must be 
included in the description of the supersonic flow field. Unfortunately, this represents a significant complication to 
the analytical modeling of the problem. 

Although the former analytical studies were conducted on the isotropic cylindrical shell, the results can, in 
certain cases, be extended to include ring and longeron stiffened cylindrical shells through the method outlined in 

[14]. 



NOTATION 

aoo speed of sound in the freestream 

B0, Bj, I$2 matrices, dynamic stability problem 

C_ pressure coefficient 

D Eh3/12(l-i>2) 

E elastic modulus 

F total stress function 

h shell thickness 

k CJR/U, reduced frequency 

L shell length 

Moo freestream Mach number 

n circumferential wave number 

Nx applied axial stress resultant 

Nx NxR[3(l-i>2)]^/Eh2 

NY critical buckling load ratio Acr 
p net radially outward loading per unit of shell surface area 

pa amount of net radial shell loading due to aerodynamic pressure 

p amount of net radial shell loading due to shell internal pressure 

f (p/E)(R/h)2[12(l*2)%/jr2] 

Poo freestream static pressure 

pt freestream total pressure loo 
q freestream dynamic pressure 

q (q/E)(R/h)2 

R shell radius 

Re Reynold's number 

Too freestream static temperature 

Tf freestream total temperature loo 
U freestream velocity 

u, v, w shell displacement components; axial, circumferential and radial 
respectively 

Uc velocity at outer edge of boundary layer 

Wj. initial imperfection 

w total deformed mode shape with respect to initially perfect cylinder 

x, y, z coordinate axes 

Zm m7T/(L/R) 

a x/R 

ß [M2-l],/4- 

X 2qL /j3D, aerodynamic loading parameter 

(i p h/PooR, mass ratio parameter 



jT imperfection amplitude ratio normalized against shell thickness 

v Poisson's ratio 

Pee freestream mass density 

ps shell mass density 

T Ut/R 

<t> perturbation velocity potential 

7*() fO^x+Oyy]2 

co frequency of motion 
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